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I. THE HARMONIC OSCILLATOR

Define operators

a∗ =
1√
2
(X −D) and a =

1√
2
(X + D),

where X is multiplication by x and D is the derivative with respect to x. It follows that a + a∗ =√
2X, so a∗ =

√
2X − a. Define f0 to be such that af0 = 0. Any solution of this equation is a

constant times f0 = e−x2/2. Define fn = (a∗)nf0, which implies afn = nfn−1 and

fn+1 = a∗fn = (
√

2X − a)fn

⇒ fn+1(x) =
√

2 xfn(x)− nfn−1(x).

This is known as a recurrence relation. Its most natural representation is in terms of a generating

function. Suppose there exists F (x, z) such that

F (x, z) =
∞∑

n=0

fn(x)

n!
zn .

We may then calculate the derivative with respect to z,

DzF =
∑
n=1

fn

(n− 1)!
zn−1 =

∑
n=0

fn+1

n!
zn

=
∑
n=0

√
2x

fn

n!
zn −

∑
n=1

n
fn−1

n!
zn

=
√

2xF − z
∑
n=1

fn−1

(n− 1)!
zn−1 = (

√
2x− z)F.

The separable differential equation DzF = (
√

2x− z)F has solution F (x, z) = e
√

2 xz−z2/2.

In quantum mechanics, momenta are represented as eigenvalues of the operator P = −iD. The

energy H is the sum of the kinetic energy, P 2/(2m), and the potential energy, given by a function

V (x). For the quadratic potential V (x) = 1
2
(x2 − 1), we have

H ≡ 1

2
P 2 + V (X) =

1

2
(−D2 + X2 − 1) = a∗a.
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Theorem 1. Hfn = nfn for all integers n ≥ 0.

Proof. For any operators A,B, define DAB = [A,B] and note that DA satisfies the product rule for

derivatives, DA(BC) = (DAB)C +BDAC. We now prove that [a, (a∗)n] = n(a∗)n−1. This is obvious

for n = 0, and for n = 1 it is the statement that Daa
∗ = 1, which we have checked previously. We

therefore use induction, assuming that D(a∗)n−1 = (n− 1)(a∗)n−2. By the product rule,

Da(a
∗ (a∗)n−1) = (Daa

∗)(a∗)n−1 + a∗Da(a
∗)n−1

= (a∗)n−1 + a∗(n− 1)(a∗)n−2 = n(a∗)n−1 .

Then

Hfn = a∗a(a∗)nf0 = (a∗)n+1 af0︸︷︷︸
=0

+a∗[a, (a∗)n]f0

= a∗n(a∗)n−1f0 = nfn . ¤

Eigenvalues of H are identified with possible energies of the system; this analysis shows that

the oscillator energies are discrete. Aside from their mathematical interest as an orthogonal basis

for the space {ψ | ∫∞−∞ |ψ(x)|2 dx < ∞}, the eigenfunctions fn are also physically meaningful, since

|fn(x)|2 represents the probability distribution for a particle’s position, if the particle is in the nth

excited state.1 Graphs of the first few are shown in Fig. 1.

FIG. 1 Plots of f2, f3, and f4.

II. MATRIX REPRESENTATIONS OF SU2

Given a set of commutation relations [A,B] = C etc, an n-dimensional matrix representation of

the algebra is a set of n×n matrices A,B, C, etc. which satisfy the given relations. The description

of spin in quantum mechanics uses matrix representations of the following algebra:

[h, x] = 2x, [h, y] = −2y, [x, y] = h . (1)

1 The last statement is only true if we divide fn by a constant equal to the total area under its graph, so it becomes
a valid probability distribution function.
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This algebra is often called sl2 due to its fundamental representation in terms of 2× 2 matrices:

x =

(
0 1

0 0

)
y =

(
0 0

1 0

)
h =

(
1 0

0 −1

)
. (2)

The choice of the coefficients 2,−2, in equation (1) is unimportant, in the sense that we can multiply

x, y, and h by three arbitrary scale factors and obtain results similar to what will follow here. The

choice of coefficients in (1) is standard in the mathematics literature (though not the standard in

physics) and causes certain other calculations to work out simply; for example, the matrix elements

in (2) are all 1 or −1.

In the following, we assume that x, y, and h are operators which act on a finite-dimensional vector

space V and which satisfy the commutation relations (1). From this (minimal) set of assumptions,

we will obtain much information. If V is one-dimensional, then all matrices act as multiplication by

a single number, and we cannot have nontrivial commutation relations, so we assume dim V > 1.

Suppose that v ∈ V is an eigenvector of h with eigenvalue λ, so hv = λv. Then using (1),

2xv = [h, x]v = hxv − xhv = h(xv)− λxv .

Therefore h(xv) = (2 + λ)xv. In other words, xv is another eigenvector, with eigenvalue λ + 2.

To organize these calculations, let Vρ denote all eigenvectors in V with eigenvalue ρ. We have just

shown that x(Vλ) ⊂ Vλ+2, and a similar calculation shows that y(Vλ) ⊂ Vλ−2, so we can view x and

y as raising and lowering operators for eigenvalues of h, similar to the way a∗ and a are raising and

lowering operators for the eigenvalues of the oscillator Hamiltonian H = a∗a.

Let X and A be any two noncommuting operators. We will need the following formula for the

commutator of X with a power of A (which may easily be proved by induction)

[X, An] =
n∑

k=1

Ak−1[X, A]An−k . (3)

Since V is finite-dimensional, h can have at most finitely many different eigenvalues; call them

λ1, . . . , λM . In general, the eigenvalues λi could be complex, but we will see this is not the case.

Choose λmax to be the eigenvalue with the largest real part. Let v0 be a nonzero eigenvector with

eigenvalue λmax (in this case, v0 is called a maximal vector).

Theorem 2. λmax is an integer.
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Proof. Since x is a raising operator, xv0 = 0. Then

xynv0 = ynxv0︸ ︷︷ ︸
=0

+[x, yn]v0 =
n∑

k=1

yk−1hyn−kv0 (4)

=
n∑

k=1

yk−1(λmax − 2(n− k))yn−kv0

=
( n∑

k=1

(λmax − 2n + 2k)
)
yn−1v0

=
(
n(λmax − 2n) + 2

n(n + 1)

2

)
yn−1v0

= n(λmax − n + 1)yn−1v0.

Since the latter formula is valid for all n, it is in particular valid for the largest n such that

yn−1v0 6= 0. Since that n was the largest (call it N), we have yNv0 = 0 and hence the left side of

equation (4) is zero. Therefore,

N(λmax −N + 1)yN−1v0 = 0 .

If N = 0 then v0 = 0, a contradiction. We conclude that λmax = N − 1. ¤
In the process, we have proven that the dimension of the space in which the operators act is

N = λmax + 1.

Theorem 3. Consider a matrix representation with no invariant subspace. If [Q,X] = 0 for all X

in the algebra, and if Ker(Q) 6= {0} then Q = 0.

Proof. Let v 6= 0 be an element of Ker(Q), so Qv = 0. Then QXv = XQv = 0, so X preserves

Ker(Q). Then Ker(Q) is a nontrivial invariant subspace, but this is a contradiction. ¤
In the situation of Theorem 3, we infer that if [A,X] = 0 for all X in the algebra, then A = λI

for some λ, where I is the identity matrix. This result is called Schur’s Lemma; the proof is to

apply Theorem 3 with Q = A− λI where λ is an eigenvalue of A.

III. ANGULAR MOMENTUM

In quantum mechanics, the momentum 3-vector p is represented by the operator −i∇, where ∇
is the gradient. The angular momentum L = r×p then has three components, which are operators

satisfying [L1, L2] = iL3. If we define x = L1 + iL2, y = L1 − iL2, and h = 2L3, then we have the

commutation relations (1). As the eigenvalues of h are integers separated by two, the eigenvalues

of L3 must be half-integers separated by one. Thus the representation with highest L3 eigenvalue

given by ` must have dimension 2` + 1 (note: 2` is λmax for h).
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Note that L2 = L · L commutes with L1, L2, L3 and hence, by Schur’s Lemma, L2 = λI in this

representation, so every vector is an eigenvector of L2.

In this context, the eigenvalue equation for L3 and for L2 are differential equations, whose

solutions are the spherical harmonics. The latter are special functions which, up to a constant

factor, take the form

eimφPm
l (cos θ), −l ≤ m ≤ l,

in spherical coordinates and which are responsible for the odd-looking shape of electron orbitals.

In quantum mechanics, the possible outcomes of a measurement are identified with the possible

eigenvalues of an operator. In this spirit, possible measurements of the z-component of angular

momentum correspond to allowed eigenvalues of L3. Theorem 2 and the surrounding discussion

then imply that these measurement outcomes are not arbitrary; the highest one, `, must be a half-

integer and there are 2` + 1 eigenvectors, and L− lowers the eigenvalue by one each time, so the

possible outcomes are m ∈ {`, ` − 1, . . . ,−`}. The angular dependence of the corresponding wave

function is proportional to eimφPm
l (cos θ). Moreover, higher ` correspond to higher energy, so the

distinct values of ` give the distinct orbitals in an atom, in order of increasing excitation energy.


