Today we reviewed the congruent number problem and how it becomes a problem about finding rational points on an elliptic curve. After drawing the real locus (the points in \mathbb{R}^2) defined by such a curve, say $y^2 = x^3 - n^2x$, we began considering whether this was really the best set of points to look at.

A digression into degenerate conics convinced us that while a conic like $x^2 + y^2 = 0$ has only a single point in \mathbb{R}^2, it consists of two whole lines when viewed in \mathbb{C}^2. Thus, to get the “real story” about a curve, such an elliptic curve, it is important to consider the complex locus – the locus in \mathbb{C}^2.

However, is that the whole story? Recalling the line parametrizing the rational points on the circle

$$x^2 + y^2 = 1$$

we remembered that a “point at ∞” corresponds to a finite point on the circle. This suggests that a full understanding of various curves (such as a line in the plane) requires “filling them in” with extra points at infinity.

The rest of the class today was an attempt to do this in a meaningful way, without relying upon a notion of limits that disguises the algebraic machinery underlying the curves. (For example, in the case of the rational points on the circle above, we can get the “extra” point on the circle, $(-1, 0)$, by allowing t to tend to ∞ in the equation $x = \frac{2y-t}{t}$ of the line passing through $(-1, 0)$ and $(1, t)$. In the limit, the line has equation $x = -1$ since $\lim_{t\to\infty} \frac{2y-t}{t} = -1$. Indeed, the line $x = -1$ intersects the circle “twice” at $(-1, 0)$ so we get the last rational point as desired. But having to take limits is a pain.)

To get this, we used the idea that points on a line correspond to lines through the origin in the plane. For example, if we take our line A to be $x = 1$ then any point $(1, t)$ corresponds to a unique line ℓ passing through $(0, 0)$ and $(1, t)$. In fact, any point (x, y) corresponds to a unique line $\ell_{(x,y)}$ through the origin, unless $x = y = 0$ – so we throw out this case. We thus have the correspondence

$$\text{lines through } (0, 0) \leftrightarrow \text{points } \neq (0, 0).$$

However, it is not a one-to-one correspondence because (x, y) and $(\alpha x, \alpha y)$ determine the same line for any α. (Check this!) If $x \neq 0$ we can always divide by x to get (x, y) and $(1, \frac{y}{x})$ determining the same line. So the points on A get us almost all the lines. But there is one extra line in the plane we don’t get, namely the y-axis defined by $x = 0$. (Given any points $(0, y)$ on this line, we cannot divide by 0 to get it into the form $(1, t)$.) However, we can choose a distinguished point $(0, 1)$ on this line. So we have a one-to-one correspondence between lines in the plane and points $[1, t]$ on the line A, plus an additional point $[0, 1]$ “at ∞”. The set of lines in the plane, or equivalently, points on A plus an additional point $[0, 1]$, is called a projective line. The coordinates $[a, b]$ (which cannot both be zero), which
are defined only up to scaling by nonzero constants, determine a point on the projective line. For example, when $a \neq 0$ the point $[a, b]$ will determine a “finite” point on the line, $[1, t]$ for $t = b/a$. And when $a = 0$ the point $[a, b] = [0, b] = [0, 1]$ is the point at ∞, the vertical line through zero in the plane, the y-axis. (These are three names for the same thing!)

Next we remembered that we were dealing with curves in the plane, \mathbb{C}^2. To get extra stuff at ∞ we need to know how to extend the regular plane to the horizon, in the way we extended the regular line to infinity. We did this in an analogous way, with A the plane in \mathbb{C}^3 defined by $x = 1$. An arbitrary point on this plane looks like $(1, y, z)$ for some y, z. The plane A is just like the regular yz plane \mathbb{C}^2. And if we look at the set of lines in \mathbb{C}^3 which pass through $(0, 0, 0)$ we see that most of them are parametrized by the points of A. Some of them lie in the regular yz-plane however, and have $x = 0$. To define one of these you must choose a point $(0, y, z)$ with y or z nonzero. If we again denote a line through zero by $[a, b, c]$ if it passes through a point $(a, b, c) \neq (0, 0, 0)$ then we have a set of bracket-coordinates for the lines through the origin in \mathbb{C}^3. In this case, the points $[1, b, c]$ correspond 1-1 with the regular points of a plane A. The points $[0, b, c]$ correspond to a “line at ∞” – and in fact this line at ∞ is a projective line. (It is a horizon, where opposite points of the horizon are identified with one another.)

We will review projective geometry next week and use it to talk about projective points on an elliptic curve. This will be important if we want every line to meet an elliptic curve in exactly three points!